skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Mason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available August 1, 2026
  3. Abstract This study models the temperature evolution during additive friction stir deposition (AFSD) using machine learning. AFSD is a solid-state additive manufacturing technology that deposits metal using plastic flow without melting. However, the ability to predict its performance using the underlying physics is in the early stage. A physics-informed machine learning approach, AFSD-Nets, is presented here to predict temperature profiles based on the combined effects of heat generation and heat transfer. The proposed AFSD-Nets includes a set of customized neural network approximators, which are used to model the coupled temperature evolution for the tool and build during multi-layer material deposition. Experiments are designed and performed using 7075 aluminum feedstock deposited on a substrate of the same material for 30 layers. A comparison of predictions and measurements shows that the proposed AFSD-Nets approach can accurately describe and predict the temperature evolution during the AFSD process. 
    more » « less